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Page 8: Replace formula for C by the following equation:

g2 - 1 1. /2 p(a/z, x 1/2; 1/7)
C=xln—p—* YT w1z, x,xi++ 1/§, 1/t)

Page 20: Line 13 should read "making use of equation (Bll), to
become".

Page 20: Unnumbered equation preceding equation (B25): _Under the
first integrel (limits 1 to &), the quantity (e + n)*'l should be

e - 1)1, Under the second integrel (limits -1 to 1), the quantity
1
(¢ - 7)1 should be (& + D

Page 20: Equation (B25) should be

v=in

Page 24, equation (B40): The log factor of I, should be:

e +p  du an
€ -un-u

log
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LIFT AND MOMENT EQUATIONS FOR OSCILLATING AIRFOILS
IN AN INFINITE UNSTAGGERED CASCADE

By Alexander Mendelson and Robert W. Carroll

SUMMARY

Exact equations are derived for the oscillatory aerodynemic forces
acting in an unstaggered cascade of airfoils fluttering in potential
flow. Aerodynamic coefficients similar to those of the isolated sirfoil
are obtained as functions of the cascade geometry and the phasing between
successive blades, the phasings considered are Zzero, 90°, and 180°. It
is shown that 90° is a special case of 180° phasing. These aerocdynamic
coefficients are plotted for the special case when all the airfoils are
vibrating in bending in phase (360° phasing). It is shown that the ef-
fect of cascading for this case is to reduce greatly the aerodynamic

damping.

INTRODUCTION

The flutter of airfoils in a cascade has until recently been pri-
marily of academic Interest. However, the widespread use of compressors
and turbines in current aircraft power plants has given the problem sig-
nificance. Compregsor blades, in particular, are susceptible to vibra-
tions, and some of these vibrations have been attributed to flutter.

The problem of the flutter of a compressor or turbine blade differs
from that of an isolated airplane wing in at least two ways. It is ne-
cessary to consider, first, the effect of centrifugat force; and, second,
the effect of cascading. The effect of centrifugal force can be taken
into account with sufficient accuracy by applying the appropriate centri-
fugal force correction to the fundamental bending frequency (ref. 1).

The effect of cascading is much more difficult to evaluate, however,
since it is necessary to take into account the interference effect be-
tween the blades, which obviously depends on the cascade geametry. Two
new geametric variables must therefore be introduced; namely, the spacing
between blades and the stagger angle. In addition, since flutter is a
time-varying phenomenon, another parameter must be introduced to take
account of the phasing between the motions of the different blades of
the cascade.
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‘The problem of flutter of compressor blades is first simplified by
assuming an infinite cascade of airfoils. A first step in a flutter
analysis of such a cascade of airfoils is to determine the oscillatory
aerodynamic forces and moments acting on the cascade. Most recorded
cases of compressor blade flutter indicate the occurrence of such flut-
ter at high aerodynamic loading, where the blade stalls and flow separa-
tion occurs, and it would be desirable to solve the problem for this
case. However, no general methods for calculating aerodynemic forces in
nonpotential flow are available. It is therefore necessary, as a first
approach, to consider the case in potential flow at low angles of attack.
The effect of flow separation at stall can then be taken into account
separately, for instance, by the introduction of aerodynamic time lags
(refs. 2 and.3) or other mechanisms which may prove useful. The obJject
of this paper is to present solutions for several special cases of the
oscillatory aerodynamic forces end moments acting on an infinite cascade
of airfoils in potential flow. .

The first derivation of oscillatory forces in a cascade was made in
reference 4. The effect of the wind-tummel walls on a fluttering isolated
airfoil was determined approximately. This is equivalent to the special
case of an infinite cascade without stagger, with adjacent blades being
180° out of phase. The integral equation for the problem was set up and
an approximate solution obtained by replacing the kernel with a simple
polynomial. The results are not applicable for spacing-to-chord ratios
of less than 1. The same problem was solved rigorously in reference 5
and in reference 6 by different methods. The results are obtained in the
form of doubly infinite series of Jacobian elliptic functions.

Another special case was treated in reference 7. A cascade with
stagger with all the bladeg vibrating in phase is considered. The method
is similar to that used in reference 8 for the isolated airfolil. The
form in which the final results are presented cannot be easily used for
numerical calculations. More recently, the general integral equation for
a cascade with stagger and prescribed phasing was set up by Sisto (ref.
9). Approximete numerical solutions were then obtained for several cases
of zero stagger. The method used is similar to that of reference 4.

The present paper attempts to £ill some of the gaps left by the pre-
viously mentioned investigations. A solution is obtained for the case of
zero stagger with the blades either 180° ocut of phase (considered in ref.
6), 90° out of phase, or in phase. The last two cases can be handled
approximately by the method of reference 9. The present paper presents
an exact solution. Furthermore, the results are obtained in a form which
allows & solution in a simple straightforward manner on a désk calculator,
the final results being presented in the form of aerodynamic coefficients
which can be calculated in a stepwise manner by the use of a set of recur-
rence formlas.
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AFERODYNAMIC LIFT AND MOMENT

The analysis of the oscillatory forces and moments acting on a cas-
cade of airfoils is made using the classical methods. In the beginning,
the cascade is assumed to be of infinite extent with arbitrary spacing
and stagger, as shown in figure 1. The problem is later specialized to
the case of zero stagger. The airfoils are assumed to be thin and per-
forming small oscillations in a potential, incompressible, ideal air-
gtream. The airfoils and their wakes are replaced by surfaces of discon-
tinuity (vortex sheets), the interaction between the vortices being
neglected. Each airfoil is- performing both bending and torsional oscil- -
lations, two adjacent airfoils being out of phase by a prescribed amount.

Under these conditions Euler's equetions of motion are first linear-
ized and then solved for the pressure distribution over the sirfoils.
The Biot-Savert theorem giving the induced velocity at any point on the
airfoil due to the vortex field must also be used to obtain a solution.
Once the pressure distribution is known the aerodynamic 1ift and moment
acting on the airfoil can be obtained by integration. The complete solu-
tion is given in appendix B. The final equations and results will be
given here.

General case. - The aerodynemic 1ift and moment acting on an unstag-
gered cascade as obtained in the mamner outlined can be expressed in a
form similar to that given in reference 10 for the isolated airfoil.

L=upb3m2Lh%+[La-(%+aLhJa

M= ﬂpb%)z Mh —(%-l— a)l'h:l%+ I:Mm - (;Iz'-+ a)(La+Mh)+(%+ a)th a

vhere (all symbols are defined in appendix A)

a elastic axis position as fraction of semichord b, measured from
midchord, positive toward trailing edge

b semichord
h bending deflection, positive downward

o4 torsional deflection about elastic axis, positive for increasing
angle of attack

o] mass density of air

w circular flutter frequency
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The aerodynamic coefficients Ly, L, My, M, are functions of the
following parameters: ) 7

k  reduced freguency, wb/V
2xm phase engle between adjacent blades; m = 0, 1/2, 1/4
A  cascade geametric perameter given by M = /s

For the isolated airfoil these coefficients are functions of only the
reduced frequency k. For convenience, the following additional param-
eters are used:

_ A
or—cothz
& = coth A
o= e+1\

~ \e-1
TET-l

T

= ik

x_z)‘+m

where
8 spacing in units of semichord
v free-stream velocity

The following scheme, as outlined in appendix C, is now used to calculate
the aerodynamic coefficients: Let
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Cjirei T Cy-1-21

d; = d j=zo0
3750 (2r)elt -4 -
[ _J
di1421 * Y3121
ey 5T = e Jz0
1=0  (2i+l)e =J
f:=c¢ +22c
+1
1= E Ly

CJ = (-l)'j (c,j-l + ZCJ + c,j'l'l)f,j
Dy = (-1)3 (d5_1 + 2d4 + d3_3)f;

J
EJ = (-1) (ej_l + Zgj + ej+l)fd

-1
~ (1yd
Fy= (-1)9 (ay, + 23, +a,,) Z (dy_ps* 431 21)

-1
_ J
Gy = (-1)7 (ay, + 2y + dy,) ii: (e5 21+ e3.1-21)
=

Ao=1
2J+1
A5 = 25 A

r'(z) = gexma function of argument z

(%,3) = xbe+1)®+2) - - « (w+j-1) = I‘rﬁxsgl

-1
F(1/2, %; %« + 1/2 + q; 1/)= Z (x &ﬁ’:&?ﬁézﬂ N
i=0

is the ordinary hypergecmetric function.
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(x+1/2,q) (L4m,q

H-m 1/2-m T'{x)T{1/2
Rl=1+_E“T"/ r§x+1§2)ZAPBPTP
p=0

2 . =
RZ___l_'_gx-zm) TTl/Z-mr"rlg)ZZ%A B TJ+P
p=0

D
BP _ il'l';l!E! Z (-l)q (%9)(-p,a) ) (’L’T)-q' F(l/Z, x; N + 1/2 + Q.;l/"">
a=0

Tlx + 1

J:
ge [1
Po(dm) = ——= (E Do * Z DJ>
¢ J=1
ge
Pz(\,m) = - 3 % ZFJ
J=1
se (1
o) =+ (35 - 2 7)
g ,j=l
se
Pyl - - 45 ) ¢
1
2ik + Rz
C(k,A,m) = - ik + T—
.
ﬁ 2ik - 2k + RS
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The aerodynemic coefficients can now be obtained as follows:

‘ P

1 i 1
I‘C[=§Lh+P3-"EPZ(l+C)-k——2'C

Py

Mh=( )Lh Pp+ 30D

k

Ma"‘(L +Mh-—-Lh) L, - +—(1> +P) ig (C+D)-k—13PlD

The geometric parameters A\, €, g,7%, T are functions of the spac-
ing and haeve been tabulated in table I for different spacings.

The quantities 2 and bJ are functions of only the phasing m.
The first 20 values of bJ bave been tgbulated in teble IL for values
of m equal to O and 1/2. It is to be noted that for m = O, bj is
equal to 1 for all J.

In the equations for Cys dj, and €3, the index J never takes on
negative values. The quantities c_j» d-J: ey must always be obtained

by calculating C3s dj, and ey-

The Pp, Pp, Pz, Py, and Pg are functions of the cascade geometric

parameter A and the phasing between blades m. The functions C and

D are functions of A, m, and the reduced frequency k. It is shown in
appendix B that the cese m = 1/4 (90° phasing) reduces to the case

m = 1/2 (180° phasing) with twice the spacing. For the case of an iso-

lated airfoil, the functions reduce as follows:

B =+ = Pz +0 .
A 20 P, + 1/2
P+ 2 Ps + 1/8
Pz-* 1
c(n,m,k) -+ C(k) Theodorsen's function

2
k

D(hmx) + - ofx) - 2 [1 - o] + &
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The coefficients Iy, L, My, and M, then reduce identically to those
of the isolated airfoil as given in reference 10.

The values of _A; are independent of geometry or phasing. The
first 30 values are tebulated in table III.

Special case, m = O: For the case of all the blades vibrating in
phase (m=0), a few simplifications can be made.

2
g -J
c: = g
J 02-1
2 -
fj’= g 5 O J
(o-1)
P. = 2
17 Ne-1)
e 2

-1/2 )
T ® . .
C=k 1n°2’1+ l-(x+ 17z)F (1/2, % ; x+1/2; 1/7)
2 2
¢ “1/ F(-1/2, x; % + 1/2; 1/7)

For this case, therefore, the bending coefficient I, is obtained
in closed form. The preceding results -can be obtained by summing the
series for the appropriate quantities or by integrating I, Ip, Ig, and
I; of appendix B directly for m = O.

APPLICATION AND RESULTS

As an example, the case in which all the blades are vibrating in
phase (m=0) will be considered. Experimental data on compressors indi-
cate that the only important type of vibration occurring is one of pure
bending. For this case, then, the only aerodynamic coefficient that
need be considered is Lh
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The functions P; and P, are plotted in figure 2 against the

cascade geometry parameter A. The real and imaginary parts of the cir-
culation function C are plotted in figure 3. It is to be noted that

C is a function of both the spacing and the reduced frequency, whereas
the P functions are independent of the reduced freguency.

In figure 3, over the range of reduced frequencies from zero to 0.6
and spacings s = 1.67 to 3.33 (this corresponds to solidities of 0.83
to 1.67), the real part of the circulation function C is independent
of reduced frequency for practical purposes, whereas the imaginary part
of C varies linearly with reduced frequency.

With the P functions and the circulation function C available,
the aerodynamic bending coefficient I3 was computed and plotted in

figure 4. The values for the isolated airfoil are also plotted on this
figure. It is to be noted that I, (as well as the other coefficients)
is complex. The real part of I3, is in phase with the displacement and
can do no work; the imaginary part is in phase with the velocity and cor-
responds to the demping component and can do work. Whether this system
is stable therefore depends on the sign of the out-of-phase component or
imaginary part of Lh' The real part of Lh is practically independent
of reduced frequency and varies only slightly with spacing in the range
considered. The imaginary part of Iy, however, varies appreciably
both with reduced frequency and spacing. This is further illustrated

in figure S5, where the coefficient I has been plotted against spac-
ing for a reduced frequency of 0.4. The results of figure 4 agree

well with those of reference 9 for a spacing s of 2.0, which is the
only one considered there. Some of the data from that reference are
plotted in the figure.

Since the imaginary part, or out-of-phase component of L;,, corres-

ponds to the aerodynamic damping, figure 4 shows clearly that the effect
of cascading is to reduce greatly the aerodynamic damping when the blades
are vibrating in phese. For example, at a reduced frequency k of 0.4
and spacing s of 2 (solidity of 1), the aerodynemic damping is approxi-
mately one-half the value for the isolated airfoil. At a reduced fre-
quency of 0.1, the damping is reduced to almost one-third the isolated
airfoil value. The higher the solidity, the lower the aerodynamic damp-
ing becomes. However, for this particular phasing (all the blades vibrat-
ing in phase), the damping never actually goes to zero in pure bending
except in-the limit of infinite solidity. -

COCLUDING REMARKS
The equations for the oscillatory aerodynamic forces acting in sev-

eral cases on a cascade of airfoils in potential flow are derived. The
aerodynamic bending coefficient is calculated and plotted for the case
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where all the blades are vibrating in phase. For this case, the effect
of cascading is to reduce greatly the aerodynamic damping force.

The results of this investigation can be used in the study of stall
flutter phenomena in a cascade in & menner similar to the use of the
classical flutter theory of the isolated airfoil for the stall flutter
of the isolated airfoil. Aerodynemic time lags can be introduced into
or characteristic times (ref. 2) can be deduced from the aerodynemic 1ift
and moment equations. The linear part of the blade characteristic (ref.
11) is directly obtainable, and the nonlinear part, if known, might be
treated by the methods of reference 2. The general usefulness of this
approach, for both the isolated airfoil and a cascade, must, however,
still be determined.

Lewis Flight Propulsion Leborstory
National Advisory Committee for Aeronautics
Cleveland, Ohio, July 16, 1954

2854



7582

Cc4~2 back

NACA TN 3263

APPENDIX A

SIMBOLS

The following symbols are used in this report:

AysBys845b 5
Cj,dj;ej

b

CEk, A,m)
D(k,A,m)
CJ’]F)J’E

.

J’
JGJ

f(t):f(n))g(i-'-)
h

i

I1,10,1z,14,
I5: 1517519

elastic axis position, measured from midchord, as a
fraction of semichord b, positive toward trailing
edge . .

coefficients in recurrence formulas given in text

semichord

functions defined in text

coefficients used in evaluating integrals, given in text

base of natural logarithms

functions of indicated varigbles

bending displacement of airfoil, positive downward
/-1

integrals defined by egs. (B40) and (B21)

reduced frequency, wb/V
1ift per unit span

aerodynamic coefficients in 1ift equation, defined in
text

moment gbout elastic axis

aerodynamic coefficients in moment equations, defined
in text

phase angle lag between any two adjacent blades, as
fraction of 2n radians, 8/2n, appendix B
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Pl’PZ’PS’
P4,P5

NACA TN 3263

functions defined in text

pressure at any point on airfoil, function of time
amplitude of pressure difference

pressure difference at a point on airfoil, pu' - pz',
function of time

2854

spa.ciﬁg between blades in units of semichord b
geometric parameter defined by Ei—_l

time

local velocity component in free-gstream direction

free-stream velocity

local velocity component perpendicular to free-stream
direction

coordinagte in free-stream direction in units of semichord

coordinate perpendicular to free-stream direction in
units of semichord

angular displacement of airfoil

stagger angle '

total circulation sbout airfoil

vortlcity distribution for reference airfoil
vorticity distribution in wake of reference airfoil
phase angle between two adjacent blades

geometric parameter defined by e="coth

transformed variaebles of integration defined in appen-
dixes C and D v
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Subscripts:
i,3,n,p,9
u

1

geometric parameter defined by ‘g eiB

air density

geometric parameter defined'b& a’é coth-%
‘ - e+1\2

geometric parameter defined by < = (E:i

velocity potential

circular frequency of oscillation

sumation indices
upper surface of airfoil

lower surface of airfoil

The subscript n 1s used also to indicate.the ot aivfoil




14 NACA TN 3263

APPENDIX B

LIFT AND MOMENT EQUATIONS
General Theory

The analysis of the oscillating airfoll of Infinite aspect ratio
in a cascade proceeds along clascical lines. The airfoil is assumed to
be of small camber and thickness and performing infinitesimal oscilla-
tions in an incompressible ideel fluid moving at a velocity V at
infinity.

2854

The airfoil and its wake are replaced by a surface of dlscontinuity
or vortex sheet of strength ¥' over the airfoil and Yw’ in the wake.
This surfece of discontinuity is assumed to lie in a horizontal plane
parallel to the direction of flow. The vertical displacement due to the
Interaction between vortices of this sheet 1s meglected, this displace-
ment being assumed smgll compared with the horizontal motion. The
assumption of small perturbations to the free-stream velocity permits
the linearization of Euler's equations and, with.the introduction of a
velocity potential, Bernoulli's equation for nonsteady incompressible -
flow is obtained. The derivation 'is given here in detail for completeness.

Eﬁer's equations for two-dimensionel flow can be written

2 () + () & (V) + v % (V+u) = - %—%

ov v ov _ _ 1 op!
G+ () X v X _p.g;L

Cons'idering only first-order terms and realizing V 18 a constent give
the linearized Euler equations as

CARE SRS >

(B1)

& =
(B2)
v,y _ 1 %
e
The velocity potential ¢ is now introduced:
u =
(B3) .

P
=
_
Sy
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Equation (B2) can now be written

IR CIRE -2

o (a9 o (o9 1 dp' (ee)
sE) v 5E)-F
which leads directly to Bermoulli's equation for nonsteady motion
§+V§+%p’=f(t) (B5)

The airfoll and its weke are now replaced by a vortex sheet of strength
T' on the airfoil and TW' in the wake. The difference between the

velocities of upper and lower surfaces of the vortex sheet is therefore
r' or T,'- For a point on the airfoil, therefore,

o, o9
= "= 7

which upon integration gives
x .
¢u—¢z=bﬁr'dxl (B6)

Equations (B5) and (B6) then give

X
Lp' = pu'-pz’=-p(\fr'+b%\/: T dxl) (B7)

Continuity of pressure in the wake requires that Ap be zero there, and
equation (B7) becomes, for the wake,

b d x b dT!
L 1 T dxli—VBt—. (z6)

where

L .
r' E—:f T'odxg (B9)
-1
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The assumption of simple harmonic motion will now be made, so that

y' = yel®t h
v' = ve:lmt
T'=7 10t
- iot > (BlO
Ty =T € ) B
It 1 h
T''=Te = eiﬂ)’b f T dx
-1

Equation (B8) now becomes

. \
T, + ik \/: T, & = - 1T (B8a)

Equation (B8a) is a simple nonhomogeneous integral equation with the
kernel equal to 1. Its solution is :

~1k(x-1
‘rw=-ikI'e (x-1)

(B11)
Equation (Bll) gives the vorticity distribution in the wake as a function
of the total circulation around the airfoil. It can also be obtained
from the condition that the total circulation around the system compris-
ing the alrfoil and the weke must equal zero.

With the use of equation (B7) the pressure distribution over the
airfoil can now be written in the following form:

(B12)

The 1ift and moment gbout the elastic axis can be found by inte-
grating the pressure distribution as follows:
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1 1 X N
L = -pVb L]/‘ Y dx - ipVbk \j/j \//\ Tax, dx
-1 -1 J-1
, - 5(1315)
} 2 1 2 1 : S, 4
M= -pVb \/[\ T(x-a)dx - ib%Vk \//\ (x-a) ‘][\ Tax dx
J-1 - -1 -1 y

Vorticity Distribution in a Cascade

, Consider an infinite cascade of airfoils of chord 2, stagger angle
B,-and spacing 8 as indicated in figure 1. The airfoils are replaced
by vortex sheets, the vorticity of the nth gheet being designated by
use of a subscript n. The Blot-Savart theorem is applied to give the
induced velocity at a point x on the reference airfoil due to an element
of vorticity of strength Yn located at the point (xl, ns cos B).

.-‘rﬁ(x - xi)dxl

dv, = =—— - - Bl4
2n|(x - x;) + (ns cos B)
Meaguring from the y' axis, this can be written
. v (x - x, - ns sin B)dx

vy, = - z 1 1 (B14a)

2nl(ns cos B)z + (x - - ns sin B)Z]

Sumning over a1l n and integrat:mg from -1 to * change équat‘ion
(B14a) to : '

... ‘ v (x % - ns sin B)
vix) = - % f Z - = = ! (B15)
-1

il [ns cos B +:i(x-xl—ns sin B_)_J[ns cos B - i(x-x;-ns sin B)]

The assumptidn is now made that any two adjacent blades are out of phase
by an angle ’

5 = 2mm Ogmgl
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This angle is constant through the cascade. The vorticity distribution
of the nth blade is therefore out of phase with that of the reference \
blade at the origin by an angle

.0y = 2mm

or

r, =1 m (B16)

2854

where 7y dis the vorticity distribution for the reference blade. Sub-
stituting T, into equation (Bl15) results in

N T(xl) iZn:mn ' r(x )
vix) = -z =T E i(xl—ﬂ 1 l Z i(x-xD ax,y (p17)

se

I=—e 1 - , == n -
-1 B se -1B -1 iB
The infinite sums can be evalusted (see ref. 12).
= ~ i2mm - -NM(1-2m) (x-x; ) -
E = = ix = (B18)
= eiﬁ(x-xl) . sinh Mx-x;)
is
=X  iB
A= S e
Substituting now equation {B18) into equation (Bl7) gives
) -X(Zm—l)(x-xl) _ c )'}T(Zm—l)(xl-x)

) = A r(xl e i X 1(x))e o
VNI = B sinh K(xl—x) 1% In sinh N(x-x) 1
-1 -1 L

(B19)
N —iB
A=3Fe

Tt should be noted that although equation (B18) is not valid for
m = 0, equation (B19) is valid for 211 m. Equation (B19) gives the
induced velocity at a point on the airfoil due to the complete vortex
field of the cascade. It reduces to the well-kmown equation for the
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isolated airfoil when the spacing s goes to infinity. If use is made
of the condition that the normal induced velocity must equal the normal
component of the velocity of the airfoil, then equation (B19) gives the
relation between the normal component of motion of the airfoil and the
vorticity distribution. The problem then becomes one of solving eguation
(B19) for the vorticity distribution as a function of the airfoil motion.
Once the vorticity distribution is kmown, the pressure distribution can
be calculated from equation (Bl2). .

The solution of the general equation (B19) will not be attempted

here. Instead, several special ca.ses of zero stagger will be considered.
For this case, B =0, A= A=ux s, and equation (B19) reduces to

) = A f Y(x7)cosh A(1-2m)(x;-x) ax, ] (BZO)

sinh X(xl-x)

Equation (B20) will now be solved for the following three values of m:

m=0 all the blades are in phase
m = % adjacent blades are 180° out of phase
m = -31'—: adjacent blades are 90° out of phase

-~

r - cosh A(x;-x)
'V'(X) = o \-/l‘ Y(xl) sinh )‘(xl_x) d.Xl

‘ >
\ - ) eX(xl-x) ~
T [ vl sinh A(x;-x) axy

-

(B21)

: ©
The second equation follows from Kelvin's theorem, since f *r(xl)dxlzo.
For m= 1/2 : . -

w(x) = _)‘_ - T(Xl)
(x) = 5= v dxy . (B22)

e = Y S m e T A v A T = T e S Ty VT A A AT S Y hp——— et A Nt . o Aot e i - e e e
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cosh (xl-x)
v(x) T on inh l(xl-x) 0%y
7 T(xl)
N ;inh%(xl-x)

For m = 1/4,

dxy (B23)

2854

" The case for m =.1/4 therefore reduces to the case of m = 1/2 with
twice the spacing. The same result can be cbtained from purely physical
considerations. Thus only equations (B21l) and (B22) have to be solved.

In order to solve equations (B21) and (B22), a transformation of
variasbles similar to that used in reference 6 will be made. Let

- ) tanh Ax = p/e
© tamhAx; = n/e , (B24)
“tanh A = 1/e

Equations (B2l) and (BZZ) can then be written in terms of u and 1,
making use of equation (B20) , to- become

() L&) ot j_kf-aiem)x_lgg_:_-_l Y ) e-n) an_
1

T K
(e+p.) 25 (e+q)" BT 2 N (Gz—qz)(c-n)m—l p-1
%= i—é]—i +m (B25)

where m tskes on the value of 0 or 1/2. Or, more briefly,

/ gn) = 2 f —(3— dn (B26)

where g(p) and f£(n) correspond to the appropriate parts of equation (B25).

Equation (B26) has an explicit solution for £(n), first obtained
in reference 13 and proven rigorously for the real domain in references
14 and 15. With the condition £(1) finite, the solution is
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1 :
£(n) = -%q/ll—;}ﬁ g(u) A7 S (p27)

The solution of equation (B25) can now be written directly.

1
), - P Vil B AR Srrg N ey VI
l+n (e-n) ala (ew)™ T

1 & (8 )'K—l a
nd' ik T f -1y ny
= e —= —— —— au| (B28)
an /; 1-u n-u | (w]l)* H-Tq

The second integral can be partly evaluated by reversing the order of

Integration:
'ql+l
f \E2 D " ‘\/ (529)

Substituting equation (B29) into equation (B28) results in
m-1
r(n) _ 2 ,[1- (s+1) V(u) ,\’lﬂt [ (e-p)™”
82_,“2 e l\llﬂ] (G-T])m l-p (e+|.1)m 'q T
s(g;- ) 1.+l a
1kl ik 1 ‘11
— e (B20)
2 ( -l "]l'"‘]
1 5"'7]1)

_e f Jﬂ)_an (B31)
l .

Equation (B30) can be integrated as indicated in equation (B31) to obtain
the total circulation around the airfoil T.

also
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£ [y (zn)™" v l+u (e-p)™ ,gg_
)‘f ,\ll”‘ (e-n)™ f R b (g)™ MH "

21

L. e [ (e+n)™t &//\ lnlkl (e-my)™
T A '\ll“] (&-m)™ -t (s+nl)" “:L"

(B32)

Equations (B30) and (B32) give explicitly the vorticity distribu-
tion over the airfoil. With the vorticity distribution known, the pres-
sure distribution and hence the 1lift and moment can now be calculated.

Lift and Moment on Airfoil in Cascade

Consider the airfoil shown in figure 6. The upward displacement
at any time +t of a point x on the airfoil is

y(x,%) = - h - b(x-a)a (B33)

The induced velocity v(x) must satisfy the condition that the flow
is everywhere tangentigl to the surface. If the induced velocity in the
x-direction is small ccmpared with free-stream velocity V, this condi-
tion leads to

v - (g . g)
i (B34)
= - (h + Vo - bad + box)
or, in the 17 coordinate,
v(n) = -(h + Vo - baa) - ZX o log __'1 ‘ (B35)
The 1ift and moment are given by
1 b
L=% f Ap(x)ax = f tp(E)ag
-1 -b
(B36)

1

M= L Ap(x) (x-a)ax
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Combining equations (B13), (B30), (B32), (B35), and (B36) and per-
forming considerable algebraic manipulation, the 1ift and moment can be
written in the followlng form:

: ,fpb%ﬁ{ 2o[r, - (3 )Lh]}

\

M=Ttpb4:a)2{Mh_<_+a>Lh]—+[ +a.>(L +Mh)+( +a. Ih]}
(B37)
where
7
Ly = Py(A,m) - = P (X,m) C(k,\,m)
L. =3 Lh +P (x,m) Pz(x,m) 1+ c(x,m,k)] -l—(k-i c(\,m,k)
= (3 D - 20 + 25 00m0 \ (as0)

=
It

= %(LCL + M - -]2—‘ I‘h) + i‘—z L, - P(Am) + %E4(x,m) +‘P3()»,m):| +

Pz(:—ém) [c(X,m,k) + D(X,m,k)] - -53— P (A,m) D(,\,m)
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2¢
P,(»m)= - ==
om) = - B1
Podm) = - 25 I,
T A
Pz(ym) = - —%= Iz
ZJIZXS .
P ()\ m) = - £ I
4\ 2.3 4
X \ (B39)
A
1+ 1k + —&— xP
+ 3 k™ e I7
20\
C(X,m,k) = - c ik
R L 1 S
8\
D(A,m,k) = - o
1+1 % ke I §
and the I's represent the following inteégrals:
— .
- e+n)Bl [T 1 (s-uml ﬁ_du an
1 1 (ep)m T -1 (e+p)m Nl’”" R
T = ()™ .\Ili-n le-p) ™, /? g S & g
N Pl S N
I, = (e+n)™ 2t ’l-"] 1log & (e-p.)m -1 /l+ dTl
L1 (e )m 1+ e+’q (et )m l-p
B 7 m-1 m-~1
Ty = (e ) R, l--l:;rl log e+ LLP_LE—‘\/%—E %
o1 (e-m) 1 “ (e+) Ho
m-1 -1 .
I = (e+n) fi=n (;og e—n)z (ep)™1 - [T log S 4
57 Ja (eny® VEU T o) [ (e NI T ebonen T

(B40)

v
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I
I, = (esn)™ 2t fm [ (emx-1 fy4l amy an )
i (e VIR [ (emy* VWL M
-1 .

I = {eal '\F— log E‘_'l [ Cemny 2 /iil“l any L

(e-n)™ 1+‘1 €+ﬂ (ml)* AL mpn
Ig = (e+n)™ -\I_ ( 6_-11 ("""l)x"l " HLim

(e-n)™ VI (e+ny ) 'l M

J-1 (B4=l)~

It 1s to be noted in the preceding iﬁtegrals that
lel =21 Ju] g2
Ifl<1  Ingl21

The integrals in equation (B40) are functions of only geometry and
phasing between blades (A and m). The P functions are therefore
functions of -geametry and phasing only.- The integrals in equation (B41)
are functions also of the reduced frequency k. The C and D func-
tions are therefore functions of reduced frequency ae well as of gecme-
try and phasing. The integrals in equation (B40) are evaluated by inte-
gration around a closed contour in the complex plane. The details are
given in appendix C. The integrals in equation (B41l) are evalusted by
means of the hypergeometric. integral. The details are given in
eppendix D.

In the limiting case of the isolated airfoil (A = 0), the following
limiting values are obtained for the various functions:

A=+0 Pi(\,m) » 2 Po(n,m) -+ 1
Pz(\m) + 0  Pg(A,m) »1/2 Ps(A,m) » 1/8
c(\,m,k) - C(k), Theodorsen's function

K2

D(L,m k) + - C(k) - £ (1 - c(x)) + =
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Equations (B37) and (B38) then reduce to those for the isolated
airfoil; Iy, Ly, My, and M, reduce identically to the coefficients

for the isolated airfoll given in reference 10.
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APPENDIX C

-

EVALUATION OF INTEGRALS I; TO Ig

The integrals I; to Ig are evaluated by integrating around a

closed contour in the camplex {-plane, where the mapping function re-
lating the n-plane to the {-plane is given by

ne e +Ife) T (c1)

By use of equation (Cl), equation (B40) cen be written as double
integrations around the closed contour C (fig. 7). Let

§2 =

§3="8+'V82‘1="%1‘ 9

Ve
o
]
™
+
™
IN
[ o
!
(4]
1
o
'N
|
]
il

- '5‘ - '\/52-1 = - §1

m-1 m-1 . ym-1 ‘
1, =1 f (SN - -G) " (g-1)® (2-4,)77H L -¢5) (L) A
o2 (£-8,)P(¢-¢,)" t T @egRgE, T & e

ooy [ feedmiee )t e [ e et e 1o E88) (0-20)
2re AT T LR AT e R (G V0 R CE D [

(8- 060" (r 132 - (€1-€)(E-E2) (21-84)2 (g1 -gp)m1 2 e (ore
I, = 5 A S L A (=Y 1 2 1 2 (§-+1) (er-eole-g)
3TE f (5-6)7(e-g)= ¢ e r“ﬁ)“ %) (gr-gg)™(er-g,)m  (&1-0(e3/¢ il DI G R

1 -3 f (&-85)"(e-2)" T (r )2 [103 (l:l-c)(c-cg)]"’ _ (-4 106" ac ac
A (8-5,)™(8-2,)" 4 (&-¢5)(¢-¢,) (£1-25)R (g1, ) (3= {0 -1/7)

azr 4

15_%f(z-¢5)“‘1(c-c4)“"1 (;-1)2[1 (cl-c)(;-cz)]zf (€5 )" MO -0) Y ()2 (5'-85)(50-¢,)

(C-C]_)N(C-(e)m 3 o8 (C‘Ks)(lﬁ-(‘) (C"(s)m(C'-Q)m C -0 -1/0) log OIS ag ag

(c2)

It is to be noted that in integrating around the closed contour C, the
integration path C' 1in the 7n-plane is actuslly being traversed twice.
Each integration around C must therefore be divided by 2.

. If the integrations in (C2) are to be performed the properties of
the various integrands must be considered. It will suffice to discuss
one of them, since they are all of the same general type.
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Consider the integi‘a.l Iz; defined by

o e R S Y N 2D LA (e - (i 7Y
51 = (Gt Plerg & -eE=17E) 8 et (e -t)

ag’

(c3)
The integrand of Izy has branch points at gl, gz = 1/gl, gs = - l/Ql,
and f, = - gl, as well as simple poles at { and l/§. The transfor-
mation (Cl) maps every point in the n-plene into a pair of reciprocal
points in the {-plane. That part of C which lies below the real axis
is therefore the reciprocal of that part of C which lies above the
real-axis, gnd every point which is outside the contour C has its
reciprocal point inside the contour. The singularities of the integrand
gppear in reciprocal pairs, one of each pair lying outside the contour
end one inside the contour. The poles at ¢ and 1/f lie on the con-
tour (see fig. 7).

Considering the branch points, branch cuts are now made between ¢{,
and {; and from §; end _t,4 to infinity as shown. The integrand is

now unique and single-valued over the path of integration. Furthermore,
it can readily be shown that since the integrand of Iz; is invariant
under the mapping &' - 1/t', (this evidently must be so because of (Cl)),
the sum of the residues at { and 1/ ¢ must vanish identically. Con-
sequently, any other contour such as CO , equivalent to C but exclud-

ing the poil;té { and l/Q, may be used.

The integrand of Iz; 18 therefore analytic in the annular region
enclosed by the curves Cq and Cp as indicated in the figure. It can
therefore be expanded into a Laurent series about the origin valid in
this annular region. If A_; 1is the coefficient of the 1/t' term in

this series, then : '
Iz = 2nid : (c4)
In order to expand the integrand into a Laurent series about the

origin valid in the indicated annulus,.equations (C2) will be written
as follows: B
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_1 -1 a-1 -1
Iln-—lgf(“?l‘)m ) (I_A)Ef('ﬁf) -8 Fwewt
20 5 (1 - ':::'t).(l - é)m 14 : (1 + ?Jt-r)-(l . u,)n (1 - %)(1 ) ‘:!')

PN ol R 2 «1,m-11- e 1+ 30+ &) | (6 +2)?
12__535]( +H)lm( u) (1_%) ( qu ( olgm [1031_;:1_1:':0]1_ +1“c‘:l)dc-dc
o

C-& -5 A (3 (s

e f SN (l-slr)(l-éJ(l-g f (k)6 -5 {m 1“;%(“-*-;—)} Bl
e (-EC-Y | CeRerd) L e Ee S | -6 %) o

where

Each integrand can now be obteined in the form of a Laurent series about the origin by expanding each
bracketed quantity (noting thet eech of these serles will counverge st least within the annulus) and
multiplying the resultent series together. In this wey, for example, the coefficlent of 1/g' can
be obtained and the inner integration performed. This coefficient will, in general, be an infinite
geries in {. The process then has to be repeated to carry out the second integration. The finel
regult will be e doubly or triply infinite series in o. The process 1s evidently extremely long and
lsboricus. However, it can be greatly simplified by employing & get of recurrence.formles which can
be obtained by inspecticm of the series, whereby each term of a given infinlte seriles 1s cbtalned in
terms of & previously given series. The calculation scheme is as follows: Let

¢o92e ML VOWN
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8p = 0; a, = 15 by =
o = 3 [(-2)ey ;- 2mm ]
by =Py ey
o Z e

Cj+1421 + C3-1-21 _
44 (2141)0%t -d

.. = Gjrares F Yy-1-25
Jd ~ T3
1=0 (Zi+l)021

Cy = (-1)3 (cj—l + 2y + c,j+l)(cj + 2 Z c1+1>
1=] .
Dy = (-1} (ay + 23y + d.j+1)<°J vz ) °1+1>

i=J

i=j
3-1
F, = (-1)9 (a1 + 23, + ay) Z (8y.g1 + &7 py)
i=0
J-1

Gy = (-J_)J (d,j-l +2dy + d‘j+l) Z (eJ-Zi “‘ 33-1-21).

i=0
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Tl T
o A »
~ —~ QZ I
QZ 1] 8 Z B o~
- — l_l
+ +
o (@] "~ EO '~
& a By . 0
PETIN TN ~ S ~
NN l __Z I
ﬁ_ZU > N S| o N
~ 3 &Y — &%
1 1 ~ 1 1\p)
I I 1 I i
0 10
oy - ) - -

Then
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EVATUATION OF INTEGRALS Ig IO Ig

Let
v = 'élf.‘: 1- 4:'1/2 £
} et o
) [e0]
/2 & -
=L 1
v, ?F-ﬁ— (p1)
1
L2 erl
T T -1
p et
<
Tl E T-l
e .

The order of integration is reversed and the logs are e:cpa.nded in order
that equations (B4) can be written as follows

l-x-m . =
o 8 x-1 -1/2( "1) 1/2 -1/2 1/2 -m
Tg=T5—— v Qv )R- = v ()R ()

0 0

(1--'1“v)-l dv dvq

1-%-m 1 1
e -1/2 1/2
T 2 Z Tj w-1 _1/2 vl)-l/?, yJ / (l-v)/
L=~ L7 [ vi (@) - =
J=1 0 . 0

(1) ™(1-7v) L av avy + %— I, log <

1-%-m l’
- [ _J
7 T % a Ti+j ‘1(1- 1/2( ) V_l)'l/ 2 v1+3-1/z
8~ 2e& T
i—-l 3—1 o

- 2
(1-vY2(m) m(l-T'v)"l v dvy + I, logT - 5 Iz log” < (p2)
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The inner integral is the same for all three, except for the expo-
nent of v. This integral can be evaluated in terms of Appell?®s hyper-
geametric function in two variables of the first kind (refs. 16 and 17).

) |
L oy o ey L /2)r(s/2)

F (n+1/2;m,1;n+2;T,T1) (D3)

T (n) Gamma function of argument n.

The hypergeometric ftmci:ipn Fl is defined in terms of a double

Infinite sum in T and T'.

T emafe D 1) (n+1/2,p+q) (m,p) R
Fy (ot1/25m, 15me2;0, 1) = ;O :L;O (w2, pra ! REpP(rn)™ (pa)

where
| (2,2) = nne1)(ni2) + - -(ap-1) = Lo (05)
(n,0) = 1; (1,n) = n!

F. can also be expressed as a single infinite sum of ordi:nary hyper-
geametric functions.

L 2
T enaDe i Z (n+1/2,p) (14m,p) A T
F. (n+1/2;m,1;0+2;T,T) = R ° ¥(-p,1;14m; 1 - e

(p6)

1
vhere F(—p,l;l-l-m; 1 - %—) is a polynomisl given by

D

s B0 G2 )
F("P:l,l"'m’ 1- T )= T+m,q l T)
g=0

-
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Upon substituting back into equations (DZ), the following integral re-
mains to be evaluated:

J;l le—lﬂ(l_vl)—l/z( i _\%)'l/ 2-q o

T (g)T(1/2 '
= TaqL/2) F(g + 1/2, x+g; x+q + 1/2; 1/x) (D8)

_Tug)r(i/a

T gl /2 "4 r(1/2, x; x+1/2+q; 1/x)

(ref. 18)

Equations (D2) can now be written as follows:

1-x-m

T 2 W
- e 15 %i%ﬁ%iw

1-x-m = =
2
L= T I‘(x)I‘(l/Z) Z Z _:;_A B TP 4 201,

4 +1 Jtp
& T(x+1/2) =1 p=0 4 by
l_:)(_m L _4 [ _J [ _J
I o Z% ? ThOr(i/2 ZZZl ‘ BT1+J+p_4AzI+“
8~ 48 T(x + 1/2 13 Haegep 6 17

(p9)

where
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b L
p+2)T (1/2)
with
Ag=1
and
itd+ptl/2

Airgrpnl = g Ratdep

1Y
BP = -(l;_l;.lgp). ZO (-l)q (x’Q)("P)Q)
g

(eT)™ f‘(l/ 2,%;%+1/2+q;1/7)

(xx1/2,q)(14m,q)
(p10)
Let: ‘
[ _J
_ K-m l/Z—mI‘xI'lZZ
Bi2l+5Tx T (x+1/2) APB i
. =0

- gx m)? /Z—mI"H.I'l Z
RZ_1+ T’tl T O /2 e
( 2 1/2-m TOL)T(1/2 Z
Ry = i/ T (/2

1 J+p
PZ'O Fhp B T

}E: 1 itj4p
= A B T
=0 itj+p

i=1 j=1 1
(D11)
Then equations (B38) for C and D can be written as follows:
. 2ik +
o) = ax 1 2T B
‘ 1
(m12)
2 . 2

2ik - 2k +RS
2 Rl
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TABLE I. - GEOMETRIC PARAMETERS

2
e+1 T-1
e=coth)\,r=(e_]) ’T=—'_r_’ (o4

NACA TN 3263

7T
[x =3 coth )

B A & g T X ]_63 T

1.0]3.1416 | 1.0037 | 1.0903 | 293.27 1.0000
1.1 2.8560| 1.0066 | 1.1220 | 92,434 1.0000
1.2 12.6180{ 1.0107 1.1573 | 35.312 1.0000
1.3 2.4166 | 1.0160| 1.1959 15.876 9999
1.4 | 2.2440( 1.0227 | 1.2372 7.9398 .9999
1.5 2.0944 | 1.0308 | 1.2809 4.3474 9998
1.6 1.9635| 1.0402 | 1.3265 2.5757 .9996
1.,711.8480| 1.0509 | 1.3740 1.6235 9994
1.8 1.7453} 1.0629 | 1.4231 1.0756 .9991
1.9 1.6535| 1.0760 | 1.4733 . 74615 . 9987
2.,011.5708 | 1.0903 | 1.5249 .53585 .9981
2.1]11.4960( 1.1057| 1.5774 .39687 . 9975
2.2 )1.4280] 1.1220 1.6308 .30253 . 9967
2.3 11.3659] 1.1393 | 1.6850 .23585 9958
2.4 11,3090 1.1574 | 1.7401 .18787 . 9947
2.511.2566 | 1.1763 | 1.7957 .15238 .9934
2.611.2083| 1.1959| 1.8517 .12565 9920
2.711.1636 | 1.2162 | 1.9085 .10508 . 9905
2.8]1.1220| 1.2372 | 1.9657 .088957 9888
2.911.0833| 1.2588 | 2.0235 .076178 9869
3.011.0472 ) 1.2809 | 2.0813 .065934 .9848
3.2 .9817 | 1.3266 | 2.1985 .050747 9803
3.4 .92401 1.3740 | 2.3164 .040292 9752
3.6 .8727 | 1.4230 | 2.4351 .032811 9695
3.8 8267 1.4734 | 2.5552 .027299 9634
4.0 .7854 | 1.5249 | 2.8760 .023138 9568
5.0 .6283 ) 1.7957 | 3.2867 .012345 .9190

- - -

- -
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TABLE II. - b, COEFFICIENTS
3 bJ 3 ®
m=0 | m=1/2 m=0| m=1/2
ol 1|1 1] 1{ o
1l 1| o 12| 1 .2256
2 1 .5 13 1 0
3 1 0 14 1 .2095
4| 1 375 15| 1| o
5|1 1] o0 16 1 .1964
6 | 1 B1esf 17| 1| o0
7 1 0 18 1 .1855
8 | 1 27360 19| 1| 0
9 1 0 20 1 .1762
10| 1 .2461
TABLE III. - A; COEFFICIENTS
i Ay
16 | 0.008232
.2500 17 .007546
.1250 18 .006950
.07812 19 .006429
.05468 | 20 | .005970
.04101 21 .005563
.03222 | 22 | .005200
.02618 23 .004875
.02182 | 24 | .oo4s582
.01855 25 .004318
01602 | 26 | .004078
.01402 27 .003860
.01240 28 .003660
.01107 | 29 | .003477
.009963} 30 | .003309
.009029
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Figure 1. - Cascade geometry.
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Figure 2. - Variation of P1 and P2 with specing.
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Figure 3. - Veriation of reel and imaginary parts of C(\,k) with reduced
frequency k for various values of spacing s. Phase lag m, O.
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Aerodynamic bending coefficient, Lh
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Figure 5. - Variation of bending coefficient Lh with spacing s.
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Figure 6. - Airfoill displacements.




46

NACA TN 3263

Figure 7. - Contours in {-plane.
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